\(\int \frac {\sin (e+f x)}{\sqrt {g \cos (e+f x)} (a+b \sin (e+f x))} \, dx\) [1392]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (warning: unable to verify)
   Maple [C] (warning: unable to verify)
   Fricas [F]
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 31, antiderivative size = 352 \[ \int \frac {\sin (e+f x)}{\sqrt {g \cos (e+f x)} (a+b \sin (e+f x))} \, dx=\frac {a \arctan \left (\frac {\sqrt {b} \sqrt {g \cos (e+f x)}}{\sqrt [4]{-a^2+b^2} \sqrt {g}}\right )}{\sqrt {b} \left (-a^2+b^2\right )^{3/4} f \sqrt {g}}+\frac {a \text {arctanh}\left (\frac {\sqrt {b} \sqrt {g \cos (e+f x)}}{\sqrt [4]{-a^2+b^2} \sqrt {g}}\right )}{\sqrt {b} \left (-a^2+b^2\right )^{3/4} f \sqrt {g}}+\frac {2 \sqrt {\cos (e+f x)} \operatorname {EllipticF}\left (\frac {1}{2} (e+f x),2\right )}{b f \sqrt {g \cos (e+f x)}}-\frac {a^2 \sqrt {\cos (e+f x)} \operatorname {EllipticPi}\left (\frac {2 b}{b-\sqrt {-a^2+b^2}},\frac {1}{2} (e+f x),2\right )}{b \left (a^2-b^2+b \sqrt {-a^2+b^2}\right ) f \sqrt {g \cos (e+f x)}}-\frac {a^2 \sqrt {\cos (e+f x)} \operatorname {EllipticPi}\left (\frac {2 b}{b+\sqrt {-a^2+b^2}},\frac {1}{2} (e+f x),2\right )}{b \left (a^2-b \left (b+\sqrt {-a^2+b^2}\right )\right ) f \sqrt {g \cos (e+f x)}} \]

[Out]

a*arctan(b^(1/2)*(g*cos(f*x+e))^(1/2)/(-a^2+b^2)^(1/4)/g^(1/2))/(-a^2+b^2)^(3/4)/f/b^(1/2)/g^(1/2)+a*arctanh(b
^(1/2)*(g*cos(f*x+e))^(1/2)/(-a^2+b^2)^(1/4)/g^(1/2))/(-a^2+b^2)^(3/4)/f/b^(1/2)/g^(1/2)+2*(cos(1/2*f*x+1/2*e)
^2)^(1/2)/cos(1/2*f*x+1/2*e)*EllipticF(sin(1/2*f*x+1/2*e),2^(1/2))*cos(f*x+e)^(1/2)/b/f/(g*cos(f*x+e))^(1/2)-a
^2*(cos(1/2*f*x+1/2*e)^2)^(1/2)/cos(1/2*f*x+1/2*e)*EllipticPi(sin(1/2*f*x+1/2*e),2*b/(b-(-a^2+b^2)^(1/2)),2^(1
/2))*cos(f*x+e)^(1/2)/b/f/(a^2-b^2+b*(-a^2+b^2)^(1/2))/(g*cos(f*x+e))^(1/2)-a^2*(cos(1/2*f*x+1/2*e)^2)^(1/2)/c
os(1/2*f*x+1/2*e)*EllipticPi(sin(1/2*f*x+1/2*e),2*b/(b+(-a^2+b^2)^(1/2)),2^(1/2))*cos(f*x+e)^(1/2)/b/f/(a^2-b*
(b+(-a^2+b^2)^(1/2)))/(g*cos(f*x+e))^(1/2)

Rubi [A] (verified)

Time = 0.49 (sec) , antiderivative size = 352, normalized size of antiderivative = 1.00, number of steps used = 12, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.323, Rules used = {2946, 2721, 2720, 2781, 2886, 2884, 335, 218, 214, 211} \[ \int \frac {\sin (e+f x)}{\sqrt {g \cos (e+f x)} (a+b \sin (e+f x))} \, dx=\frac {a \arctan \left (\frac {\sqrt {b} \sqrt {g \cos (e+f x)}}{\sqrt {g} \sqrt [4]{b^2-a^2}}\right )}{\sqrt {b} f \sqrt {g} \left (b^2-a^2\right )^{3/4}}+\frac {a \text {arctanh}\left (\frac {\sqrt {b} \sqrt {g \cos (e+f x)}}{\sqrt {g} \sqrt [4]{b^2-a^2}}\right )}{\sqrt {b} f \sqrt {g} \left (b^2-a^2\right )^{3/4}}-\frac {a^2 \sqrt {\cos (e+f x)} \operatorname {EllipticPi}\left (\frac {2 b}{b-\sqrt {b^2-a^2}},\frac {1}{2} (e+f x),2\right )}{b f \left (b \sqrt {b^2-a^2}+a^2-b^2\right ) \sqrt {g \cos (e+f x)}}-\frac {a^2 \sqrt {\cos (e+f x)} \operatorname {EllipticPi}\left (\frac {2 b}{b+\sqrt {b^2-a^2}},\frac {1}{2} (e+f x),2\right )}{b f \left (a^2-b \left (\sqrt {b^2-a^2}+b\right )\right ) \sqrt {g \cos (e+f x)}}+\frac {2 \sqrt {\cos (e+f x)} \operatorname {EllipticF}\left (\frac {1}{2} (e+f x),2\right )}{b f \sqrt {g \cos (e+f x)}} \]

[In]

Int[Sin[e + f*x]/(Sqrt[g*Cos[e + f*x]]*(a + b*Sin[e + f*x])),x]

[Out]

(a*ArcTan[(Sqrt[b]*Sqrt[g*Cos[e + f*x]])/((-a^2 + b^2)^(1/4)*Sqrt[g])])/(Sqrt[b]*(-a^2 + b^2)^(3/4)*f*Sqrt[g])
 + (a*ArcTanh[(Sqrt[b]*Sqrt[g*Cos[e + f*x]])/((-a^2 + b^2)^(1/4)*Sqrt[g])])/(Sqrt[b]*(-a^2 + b^2)^(3/4)*f*Sqrt
[g]) + (2*Sqrt[Cos[e + f*x]]*EllipticF[(e + f*x)/2, 2])/(b*f*Sqrt[g*Cos[e + f*x]]) - (a^2*Sqrt[Cos[e + f*x]]*E
llipticPi[(2*b)/(b - Sqrt[-a^2 + b^2]), (e + f*x)/2, 2])/(b*(a^2 - b^2 + b*Sqrt[-a^2 + b^2])*f*Sqrt[g*Cos[e +
f*x]]) - (a^2*Sqrt[Cos[e + f*x]]*EllipticPi[(2*b)/(b + Sqrt[-a^2 + b^2]), (e + f*x)/2, 2])/(b*(a^2 - b*(b + Sq
rt[-a^2 + b^2]))*f*Sqrt[g*Cos[e + f*x]])

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 218

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 2]], s = Denominator[Rt[-a/b, 2]]},
Dist[r/(2*a), Int[1/(r - s*x^2), x], x] + Dist[r/(2*a), Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !Gt
Q[a/b, 0]

Rule 335

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + b*(x^(k*n)/c^n))^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2721

Int[((b_)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Dist[(b*Sin[c + d*x])^n/Sin[c + d*x]^n, Int[Sin[c + d*x]
^n, x], x] /; FreeQ[{b, c, d}, x] && LtQ[-1, n, 1] && IntegerQ[2*n]

Rule 2781

Int[1/(Sqrt[cos[(e_.) + (f_.)*(x_)]*(g_.)]*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> With[{q = Rt[
-a^2 + b^2, 2]}, Dist[-a/(2*q), Int[1/(Sqrt[g*Cos[e + f*x]]*(q + b*Cos[e + f*x])), x], x] + (Dist[b*(g/f), Sub
st[Int[1/(Sqrt[x]*(g^2*(a^2 - b^2) + b^2*x^2)), x], x, g*Cos[e + f*x]], x] - Dist[a/(2*q), Int[1/(Sqrt[g*Cos[e
 + f*x]]*(q - b*Cos[e + f*x])), x], x])] /; FreeQ[{a, b, e, f, g}, x] && NeQ[a^2 - b^2, 0]

Rule 2884

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 2886

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist
[Sqrt[(c + d*Sin[e + f*x])/(c + d)]/Sqrt[c + d*Sin[e + f*x]], Int[1/((a + b*Sin[e + f*x])*Sqrt[c/(c + d) + (d/
(c + d))*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && N
eQ[c^2 - d^2, 0] &&  !GtQ[c + d, 0]

Rule 2946

Int[((cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]))/((a_) + (b_.)*sin[(e_.) + (
f_.)*(x_)]), x_Symbol] :> Dist[d/b, Int[(g*Cos[e + f*x])^p, x], x] + Dist[(b*c - a*d)/b, Int[(g*Cos[e + f*x])^
p/(a + b*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[a^2 - b^2, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {\int \frac {1}{\sqrt {g \cos (e+f x)}} \, dx}{b}-\frac {a \int \frac {1}{\sqrt {g \cos (e+f x)} (a+b \sin (e+f x))} \, dx}{b} \\ & = \frac {a^2 \int \frac {1}{\sqrt {g \cos (e+f x)} \left (\sqrt {-a^2+b^2}-b \cos (e+f x)\right )} \, dx}{2 b \sqrt {-a^2+b^2}}+\frac {a^2 \int \frac {1}{\sqrt {g \cos (e+f x)} \left (\sqrt {-a^2+b^2}+b \cos (e+f x)\right )} \, dx}{2 b \sqrt {-a^2+b^2}}-\frac {(a g) \text {Subst}\left (\int \frac {1}{\sqrt {x} \left (\left (a^2-b^2\right ) g^2+b^2 x^2\right )} \, dx,x,g \cos (e+f x)\right )}{f}+\frac {\sqrt {\cos (e+f x)} \int \frac {1}{\sqrt {\cos (e+f x)}} \, dx}{b \sqrt {g \cos (e+f x)}} \\ & = \frac {2 \sqrt {\cos (e+f x)} \operatorname {EllipticF}\left (\frac {1}{2} (e+f x),2\right )}{b f \sqrt {g \cos (e+f x)}}-\frac {(2 a g) \text {Subst}\left (\int \frac {1}{\left (a^2-b^2\right ) g^2+b^2 x^4} \, dx,x,\sqrt {g \cos (e+f x)}\right )}{f}+\frac {\left (a^2 \sqrt {\cos (e+f x)}\right ) \int \frac {1}{\sqrt {\cos (e+f x)} \left (\sqrt {-a^2+b^2}-b \cos (e+f x)\right )} \, dx}{2 b \sqrt {-a^2+b^2} \sqrt {g \cos (e+f x)}}+\frac {\left (a^2 \sqrt {\cos (e+f x)}\right ) \int \frac {1}{\sqrt {\cos (e+f x)} \left (\sqrt {-a^2+b^2}+b \cos (e+f x)\right )} \, dx}{2 b \sqrt {-a^2+b^2} \sqrt {g \cos (e+f x)}} \\ & = \frac {2 \sqrt {\cos (e+f x)} \operatorname {EllipticF}\left (\frac {1}{2} (e+f x),2\right )}{b f \sqrt {g \cos (e+f x)}}-\frac {a^2 \sqrt {\cos (e+f x)} \operatorname {EllipticPi}\left (\frac {2 b}{b-\sqrt {-a^2+b^2}},\frac {1}{2} (e+f x),2\right )}{b \left (a^2-b^2+b \sqrt {-a^2+b^2}\right ) f \sqrt {g \cos (e+f x)}}+\frac {a^2 \sqrt {\cos (e+f x)} \operatorname {EllipticPi}\left (\frac {2 b}{b+\sqrt {-a^2+b^2}},\frac {1}{2} (e+f x),2\right )}{b \sqrt {-a^2+b^2} \left (b+\sqrt {-a^2+b^2}\right ) f \sqrt {g \cos (e+f x)}}+\frac {a \text {Subst}\left (\int \frac {1}{\sqrt {-a^2+b^2} g-b x^2} \, dx,x,\sqrt {g \cos (e+f x)}\right )}{\sqrt {-a^2+b^2} f}+\frac {a \text {Subst}\left (\int \frac {1}{\sqrt {-a^2+b^2} g+b x^2} \, dx,x,\sqrt {g \cos (e+f x)}\right )}{\sqrt {-a^2+b^2} f} \\ & = \frac {a \arctan \left (\frac {\sqrt {b} \sqrt {g \cos (e+f x)}}{\sqrt [4]{-a^2+b^2} \sqrt {g}}\right )}{\sqrt {b} \left (-a^2+b^2\right )^{3/4} f \sqrt {g}}+\frac {a \text {arctanh}\left (\frac {\sqrt {b} \sqrt {g \cos (e+f x)}}{\sqrt [4]{-a^2+b^2} \sqrt {g}}\right )}{\sqrt {b} \left (-a^2+b^2\right )^{3/4} f \sqrt {g}}+\frac {2 \sqrt {\cos (e+f x)} \operatorname {EllipticF}\left (\frac {1}{2} (e+f x),2\right )}{b f \sqrt {g \cos (e+f x)}}-\frac {a^2 \sqrt {\cos (e+f x)} \operatorname {EllipticPi}\left (\frac {2 b}{b-\sqrt {-a^2+b^2}},\frac {1}{2} (e+f x),2\right )}{b \left (a^2-b^2+b \sqrt {-a^2+b^2}\right ) f \sqrt {g \cos (e+f x)}}+\frac {a^2 \sqrt {\cos (e+f x)} \operatorname {EllipticPi}\left (\frac {2 b}{b+\sqrt {-a^2+b^2}},\frac {1}{2} (e+f x),2\right )}{b \sqrt {-a^2+b^2} \left (b+\sqrt {-a^2+b^2}\right ) f \sqrt {g \cos (e+f x)}} \\ \end{align*}

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 6 vs. order 4 in optimal.

Time = 6.50 (sec) , antiderivative size = 546, normalized size of antiderivative = 1.55 \[ \int \frac {\sin (e+f x)}{\sqrt {g \cos (e+f x)} (a+b \sin (e+f x))} \, dx=-\frac {2 \sqrt {\cos (e+f x)} \left (a+b \sqrt {\sin ^2(e+f x)}\right ) \left (\frac {a \left (-2 \arctan \left (1-\frac {\sqrt {2} \sqrt {b} \sqrt {\cos (e+f x)}}{\sqrt [4]{a^2-b^2}}\right )+2 \arctan \left (1+\frac {\sqrt {2} \sqrt {b} \sqrt {\cos (e+f x)}}{\sqrt [4]{a^2-b^2}}\right )-\log \left (\sqrt {a^2-b^2}-\sqrt {2} \sqrt {b} \sqrt [4]{a^2-b^2} \sqrt {\cos (e+f x)}+b \cos (e+f x)\right )+\log \left (\sqrt {a^2-b^2}+\sqrt {2} \sqrt {b} \sqrt [4]{a^2-b^2} \sqrt {\cos (e+f x)}+b \cos (e+f x)\right )\right )}{4 \sqrt {2} \sqrt {b} \left (a^2-b^2\right )^{3/4}}+\frac {5 b \left (a^2-b^2\right ) \operatorname {AppellF1}\left (\frac {1}{4},-\frac {1}{2},1,\frac {5}{4},\cos ^2(e+f x),\frac {b^2 \cos ^2(e+f x)}{-a^2+b^2}\right ) \sqrt {\cos (e+f x)} \sqrt {\sin ^2(e+f x)}}{\left (a^2-b^2+b^2 \cos ^2(e+f x)\right ) \left (-5 \left (a^2-b^2\right ) \operatorname {AppellF1}\left (\frac {1}{4},-\frac {1}{2},1,\frac {5}{4},\cos ^2(e+f x),\frac {b^2 \cos ^2(e+f x)}{-a^2+b^2}\right )+2 \left (2 b^2 \operatorname {AppellF1}\left (\frac {5}{4},-\frac {1}{2},2,\frac {9}{4},\cos ^2(e+f x),\frac {b^2 \cos ^2(e+f x)}{-a^2+b^2}\right )+\left (a^2-b^2\right ) \operatorname {AppellF1}\left (\frac {5}{4},\frac {1}{2},1,\frac {9}{4},\cos ^2(e+f x),\frac {b^2 \cos ^2(e+f x)}{-a^2+b^2}\right )\right ) \cos ^2(e+f x)\right )}\right )}{f \sqrt {g \cos (e+f x)} (a+b \sin (e+f x))} \]

[In]

Integrate[Sin[e + f*x]/(Sqrt[g*Cos[e + f*x]]*(a + b*Sin[e + f*x])),x]

[Out]

(-2*Sqrt[Cos[e + f*x]]*(a + b*Sqrt[Sin[e + f*x]^2])*((a*(-2*ArcTan[1 - (Sqrt[2]*Sqrt[b]*Sqrt[Cos[e + f*x]])/(a
^2 - b^2)^(1/4)] + 2*ArcTan[1 + (Sqrt[2]*Sqrt[b]*Sqrt[Cos[e + f*x]])/(a^2 - b^2)^(1/4)] - Log[Sqrt[a^2 - b^2]
- Sqrt[2]*Sqrt[b]*(a^2 - b^2)^(1/4)*Sqrt[Cos[e + f*x]] + b*Cos[e + f*x]] + Log[Sqrt[a^2 - b^2] + Sqrt[2]*Sqrt[
b]*(a^2 - b^2)^(1/4)*Sqrt[Cos[e + f*x]] + b*Cos[e + f*x]]))/(4*Sqrt[2]*Sqrt[b]*(a^2 - b^2)^(3/4)) + (5*b*(a^2
- b^2)*AppellF1[1/4, -1/2, 1, 5/4, Cos[e + f*x]^2, (b^2*Cos[e + f*x]^2)/(-a^2 + b^2)]*Sqrt[Cos[e + f*x]]*Sqrt[
Sin[e + f*x]^2])/((a^2 - b^2 + b^2*Cos[e + f*x]^2)*(-5*(a^2 - b^2)*AppellF1[1/4, -1/2, 1, 5/4, Cos[e + f*x]^2,
 (b^2*Cos[e + f*x]^2)/(-a^2 + b^2)] + 2*(2*b^2*AppellF1[5/4, -1/2, 2, 9/4, Cos[e + f*x]^2, (b^2*Cos[e + f*x]^2
)/(-a^2 + b^2)] + (a^2 - b^2)*AppellF1[5/4, 1/2, 1, 9/4, Cos[e + f*x]^2, (b^2*Cos[e + f*x]^2)/(-a^2 + b^2)])*C
os[e + f*x]^2))))/(f*Sqrt[g*Cos[e + f*x]]*(a + b*Sin[e + f*x]))

Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 2.13 (sec) , antiderivative size = 857, normalized size of antiderivative = 2.43

method result size
default \(\text {Expression too large to display}\) \(857\)

[In]

int(sin(f*x+e)/(a+b*sin(f*x+e))/(g*cos(f*x+e))^(1/2),x,method=_RETURNVERBOSE)

[Out]

(-4*a*(g^2*(a^2-b^2)/b^2)^(1/4)*2^(1/2)*(ln((2*g*cos(1/2*f*x+1/2*e)^2-g+(g^2*(a^2-b^2)/b^2)^(1/4)*(2*g*cos(1/2
*f*x+1/2*e)^2-g)^(1/2)*2^(1/2)+(g^2*(a^2-b^2)/b^2)^(1/2))/(2*g*cos(1/2*f*x+1/2*e)^2-g-(g^2*(a^2-b^2)/b^2)^(1/4
)*(2*g*cos(1/2*f*x+1/2*e)^2-g)^(1/2)*2^(1/2)+(g^2*(a^2-b^2)/b^2)^(1/2)))+2*arctan((2^(1/2)*(2*g*cos(1/2*f*x+1/
2*e)^2-g)^(1/2)+(g^2*(a^2-b^2)/b^2)^(1/4))/(g^2*(a^2-b^2)/b^2)^(1/4))+2*arctan((2^(1/2)*(2*g*cos(1/2*f*x+1/2*e
)^2-g)^(1/2)-(g^2*(a^2-b^2)/b^2)^(1/4))/(g^2*(a^2-b^2)/b^2)^(1/4)))/(16*a^2-16*b^2)/g-1/2*(g*(2*cos(1/2*f*x+1/
2*e)^2-1)*sin(1/2*f*x+1/2*e)^2)^(1/2)/b*(-1+sin(1/2*f*x+1/2*e)^2)*sum(_alpha/(2*_alpha^2-1)*(8*(g*(2*_alpha^2*
b^2+a^2-2*b^2)/b^2)^(1/2)*(sin(1/2*f*x+1/2*e)^2)^(1/2)*(1-2*cos(1/2*f*x+1/2*e)^2)^(1/2)*EllipticPi(cos(1/2*f*x
+1/2*e),-4*b^2/a^2*(_alpha^2-1),2^(1/2))*_alpha^3*b^2-8*b^2*_alpha*(sin(1/2*f*x+1/2*e)^2)^(1/2)*(1-2*cos(1/2*f
*x+1/2*e)^2)^(1/2)*EllipticPi(cos(1/2*f*x+1/2*e),-4*b^2/a^2*(_alpha^2-1),2^(1/2))*(g*(2*_alpha^2*b^2+a^2-2*b^2
)/b^2)^(1/2)+a^2*2^(1/2)*arctanh(1/2*g*(4*_alpha^2-3)/(4*a^2-3*b^2)*(b^2*_alpha^2+4*a^2*cos(1/2*f*x+1/2*e)^2-3
*b^2*cos(1/2*f*x+1/2*e)^2-3*a^2+2*b^2)*2^(1/2)/(g*(2*_alpha^2*b^2+a^2-2*b^2)/b^2)^(1/2)/(-g*(2*sin(1/2*f*x+1/2
*e)^4-sin(1/2*f*x+1/2*e)^2))^(1/2))*(-g*sin(1/2*f*x+1/2*e)^2*(2*sin(1/2*f*x+1/2*e)^2-1))^(1/2))/(g*(2*_alpha^2
*b^2+a^2-2*b^2)/b^2)^(1/2)/(-g*sin(1/2*f*x+1/2*e)^2*(2*sin(1/2*f*x+1/2*e)^2-1))^(1/2),_alpha=RootOf(4*_Z^4*b^2
-4*_Z^2*b^2+a^2))/a^2/sin(1/2*f*x+1/2*e)/(g*(2*cos(1/2*f*x+1/2*e)^2-1))^(1/2))/f

Fricas [F]

\[ \int \frac {\sin (e+f x)}{\sqrt {g \cos (e+f x)} (a+b \sin (e+f x))} \, dx=\int { \frac {\sin \left (f x + e\right )}{\sqrt {g \cos \left (f x + e\right )} {\left (b \sin \left (f x + e\right ) + a\right )}} \,d x } \]

[In]

integrate(sin(f*x+e)/(a+b*sin(f*x+e))/(g*cos(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(g*cos(f*x + e))*sin(f*x + e)/(b*g*cos(f*x + e)*sin(f*x + e) + a*g*cos(f*x + e)), x)

Sympy [F(-1)]

Timed out. \[ \int \frac {\sin (e+f x)}{\sqrt {g \cos (e+f x)} (a+b \sin (e+f x))} \, dx=\text {Timed out} \]

[In]

integrate(sin(f*x+e)/(a+b*sin(f*x+e))/(g*cos(f*x+e))**(1/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {\sin (e+f x)}{\sqrt {g \cos (e+f x)} (a+b \sin (e+f x))} \, dx=\int { \frac {\sin \left (f x + e\right )}{\sqrt {g \cos \left (f x + e\right )} {\left (b \sin \left (f x + e\right ) + a\right )}} \,d x } \]

[In]

integrate(sin(f*x+e)/(a+b*sin(f*x+e))/(g*cos(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

integrate(sin(f*x + e)/(sqrt(g*cos(f*x + e))*(b*sin(f*x + e) + a)), x)

Giac [F]

\[ \int \frac {\sin (e+f x)}{\sqrt {g \cos (e+f x)} (a+b \sin (e+f x))} \, dx=\int { \frac {\sin \left (f x + e\right )}{\sqrt {g \cos \left (f x + e\right )} {\left (b \sin \left (f x + e\right ) + a\right )}} \,d x } \]

[In]

integrate(sin(f*x+e)/(a+b*sin(f*x+e))/(g*cos(f*x+e))^(1/2),x, algorithm="giac")

[Out]

integrate(sin(f*x + e)/(sqrt(g*cos(f*x + e))*(b*sin(f*x + e) + a)), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\sin (e+f x)}{\sqrt {g \cos (e+f x)} (a+b \sin (e+f x))} \, dx=\int \frac {\sin \left (e+f\,x\right )}{\sqrt {g\,\cos \left (e+f\,x\right )}\,\left (a+b\,\sin \left (e+f\,x\right )\right )} \,d x \]

[In]

int(sin(e + f*x)/((g*cos(e + f*x))^(1/2)*(a + b*sin(e + f*x))),x)

[Out]

int(sin(e + f*x)/((g*cos(e + f*x))^(1/2)*(a + b*sin(e + f*x))), x)